Relationship between preexponent and distribution over activation barrier energies for enzymatic reactions
نویسنده
چکیده
A relationship between the preexponent of the rate constant and the distribution over activation barrier energies for enzymatic/protein reactions is revealed. We consider an enzyme solution is an ensemble of individual molecules with different values of the activation barrier energy described by the distribution. From solvent viscosity effect on the preexponent we derive the integral equation for the distribution and find its approximate solution. Our approach enables us to attain a twofold goal. Firstly it yields a simple interpretation of solvent viscosity dependence for enzymatic/protein reactions that requires neither a modification of the Kramers’ theory nor that of the Stokes law. Secondly our approach enables us to deduce the form of the distribution over activation barrier energies. The obtained function has a familiar bell-shaped form and is in qualitative agreement with results of single enzyme kinetics measurements. General formalism is exemplified by the analysis of literature experimental data.
منابع مشابه
Kinetic Study of Reactions between Nitrile Oxides with Simple Cycloalkynes with DFT Method
In this study, reactions of the simple cycloalkynes with substituted Nitrile Oxides, by DFT method will be discussed. The investigation of the structural properties, theoretical thermodynamic and kinetic data, i.e., the activation free energies(DG*), the free energies changes of reaction(DrG) and rate constants of the reactions (k) in 298 K and effects of Electron-withdrawing and...
متن کاملFusion at deep subbarrier energies: potential inversion revisited
For a single potential barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at energies well below the Coulomb barrier and directly determine the inter-nucleus potential between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier energies are gov...
متن کاملEFFECT OF Si ANTIOXIDANT ON THE RATE OF OXIDATION OF CARBON IN MgO- C REFRACTORY
Progressive conversion/shrinking core (PC-SC) models of constant-size cylinders were exploited to interpret the decarburization reactions of MgO-C-Si bricks heated up under blown air. Chemical adsorption/solid (or pore) diffusion mechanisms governed the reaction rate. With 5% silicon, chemical adsorption vanished at 1000 and 1100°C. The oxidation rate lowered then with temperature. This was due...
متن کاملA competitive Diels-Alder/1, 3-dipolar cycloaddition reaction of1-H-imidazole 3-oxide toward sulfonyl methane. A DFT study on the energetic and regioselectivity
The dual diene/1,3-dipolar character of 1-H-imidazole 3-oxide, HIO 1, allows this compound toparticipate in a competitive Diels-Alder (DA)/1,3-dipolar cycloaddition (13DC) reaction toward C=Sdouble bond of the electro-deficient sulfonyl methane SFM 2. The B3LYP/6-311++G(d,p) calculatedrelative Gibbs free energies indicate that among the studied 13DC and DA reactions, former iscompletely preferr...
متن کاملHydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory
The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...
متن کامل